
With the use of the North American Multi-Model Ensemble, a web-based tool  

provides useful information to users who rely on seasonal climate forecasts  

for their operations and decision-making.
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THE DEVELOPMENT OF A NEW 
REGIONAL SEASONAL CLIMATE 

FORECAST TOOL
Rebecca a. bolingeR, andRew d. gRonewold, Keith Kompoltowicz, and lauRen m. FRy

R ecent regional climate extremes, including the  
 ongoing drought in California (Seager et al.  
 2015) and extreme cold outbreaks across the 

northeastern United States (Clites et al. 2014), have 
directed national attention to the importance of 

understanding and anticipating climate variability 
(Herring et al. 2014). Commercial, municipal, and 
recreational sectors are sensitive to impacts from 
climate variability and climate extremes. Decision-
making processes adopted by the various sectors 
require reliable climate prediction resources to better 
anticipate, adapt to, and respond to these changes 
and extremes in climate (Kerr 2011). Of particular 
importance at the regional scale is the skill in seasonal 
forecasting (Yuan et al. 2015).

The National Oceanic Atmospheric Administra-
tion's (NOAA) Climate Prediction Center (CPC; part 
of the National Centers for Environmental Predic-
tion) has been a leader in seasonal climate prediction 
with their production of long-range forecasts (LRFs; 
O’Lenic et al. 2008). Despite the success of these 
products, including their regional uses for decision-
making (Croley 2000), several limitations should 
be acknowledged. For example, recent research 
underscores the challenges introduced by truncating 
(or restricting) climate information at geopolitical 
boundaries (Gronewold and Fortin 2012). This prob-
lem is prevalent in basins that intersect international 
borders but is not addressed by CPC’s outlooks. One 
solution to this problem would be the utilization of 
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global or regional climate models that are not defined 
or restricted by artificial boundaries. Additionally, 
use of the national product for regional decision-
making can present challenges. We are not aware of 
a commonly adopted protocol for downscaling the 
LRFs, yet variability in these protocols can lead to 
significant differences between downscaled products 
that can be potentially confusing to users.

A recent multiagency ef fort to provide an 
operational ensemble of global climate model 
predictions, known as the North American Multi-
Model Ensemble (NMME; Kirtman et al. 2014), has 
the potential to fill some of these gaps in regional 
climate forecasting. Launched in 2011, the NMME 
delivers global coverage forecasts from a number of 
U.S. and Canadian agencies. Most recent NMME 
forecasts include inputs from the Climate Forecast 
System, version 2 (CFSv2; Saha et al. 2014); the 
Geophysical Fluid Dynamics Laboratory (GFDL; 
Zhang et al. 2007) and GFDL Forecast-Oriented Low 
Ocean Resolution (FLOR; Jia et al. 2015) models; the 
National Center for Atmospheric Research (NCAR) 
Community Climate System Model, version 4 
(CCSM4; Gent et al. 2011); the National Aeronautics 
and Space Administration (NASA) Goddard Earth 
Observing System, version 5 (GEOS-5), sea ice and 
ocean data assimilation systems model (Vernieres 
et al. 2012); and two models from the Canadian 
Meteorological Centre [Third Generation Canadian 
Coupled Global Climate Model (CanCM3) and 
Fourth Generation Canadian Coupled Global 
Climate Model (CanCM4); Merryfield et al. 2013]. 
The full list of models used is described in detail by 
Kirtman et al. (2014).

Research has been done to assess the overall skill of 
the NMME, including Wood et al. (2015), Becker et al. 
(2014), and Mo and Lettenmaier (2014). These studies 
have found that the NMME often meets or exceeds 
the forecast skill of individual models. Other research 
has focused on using NMME for region-specific 
forecasts and hindcasts. Ma et al. (2015) analyzed 
the skill of NMME as a drought predictor in China. 
Tian et al. (2014) researched statistical downscaling of 
the NMME’s precipitation and temperature forecasts 
over Florida, Georgia, and Alabama, and Thiaw and 
Kumar (2015) documented work toward improved 
seasonal climate forecasts throughout Africa.

Although research on the NMME’s skill and 
utilization at regional scales (noted above) is extensive, 
NMME is still very much in a research and testing 
phase. There are limited research-to-operations 
(R2O) examples showing use of NMME within 
regional applications. Yuan et al. (2015) showed that 

the NMME can be used for real-time applications 
(predicting the 2012 drought over the central United 
States), a necessary step for moving toward an opera-
tional product. Another regional example (Barnston 
et al. 2015) detailed the efforts of improving seasonal 
predictions in the tropical Pacific [a region commonly 
assessed for El Niño–Southern Oscillation (ENSO) 
conditions], which have directly impacted operational 
forecasted ENSO plumes. However, there remains 
untapped potential for implementation of the NMME 
within regional, operational decision-making.

In this paper, we document the leveraging of 
the NMME to advance current regional climate 
forecasting methods through the development of a 
region-specific seasonal climate forecast tool. This 
tool serves as an example of a successful R2O within 
a water resource management framework and can be 
easily expanded and applied to other regions.

DEVELOPMENT AND APPLICATION OF A 
NEW NMME-BASED REGIONAL CLIMATE 
TOOL. While the NMME analysis, tool develop-
ment, and testing procedures we describe in the 
following sections are applicable to any region of 
North America, we demonstrate their utility specifi-
cally for the North American Great Lakes because it 
is a focal point for high-level water resource manage-
ment planning agencies (e.g., the U.S. Army Corps 
of Engineers, Environment Canada, the New York 
Power Authority, and Ontario Power Generation). 
These and other regional agencies rely on basin-
scale climate outlooks to develop water budget and 
water-level forecasts (Lee et al. 1997; Noorbakhsh 
and Wilshaw 1990) and guide decisions, such as 
(but not limited to) those pertaining to commercial 
navigation (Millerd 2011). We also focus on the Great 
Lakes because climate information for this region 
must explicitly account not only for climate impacts 
on broad-scale land–lake–atmosphere interactions 
(the Great Lakes basin is roughly one-third surface 
water and Lakes Superior and Michigan–Huron 
constitute the largest surface area of freshwater on 
Earth; Mortsch and Quinn 1996), but also for how 
those interactions feed back into regional climate 
dynamics (Lofgren et al. 2013; Notaro et al. 2013). 
While there is a clear and urgent need for Great Lakes 
region–specific climate information, we find there 
are few resources that seamlessly integrate existing 
national-scale information (including, e.g., CPC’s 
LRFs) across the binational land and lake surfaces 
of the Great Lakes basin. Our new tool and analysis 
procedures directly address this gap in the nation’s 
(and the continent’s) climate portfolio.
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Here, we present the development and applica-
tion of a regional forecast tool specifically for the 
U.S. Army Corps of Engineers, Detroit District 
(USACE-Detroit), a regional agency responsible 
for the operational production and release of water 
budget and seasonal water-level projections. Current 
protocol includes use of a physically based hydrologic 
model (Gronewold et al. 2011) and empirical models 
(Noorbakhsh and Wilshaw 1990), which are partially 
driven by CPC’s LRFs. Figure 1 represents the col-
lection of possible probabilistic LRFs that are used 
for constructing the outlook maps (Fig. 2, left side). 
Outlook maps are constructed based on analysis of a 
suite of tools utilized by CPC forecasters, including 
dynamic models, statistical patterns, soil moisture 
information, and ENSO conditions. Within the 
Great Lakes hydrologic model framework, histori-
cal simulations are run, with greater weight given 
to climatic conditions in the historic record that 
are similar to the outlook maps for the region. For 
example, if a given season is forecasted by CPC to 
have a 40% chance of above-normal precipitation, 
historic simulations with precipitation values that 
match this adjusted distribution will be given greater 
weighting in the model (Croley 2000). For the em-
pirical method, USACE-Detroit forecasters assign 
specific precipitation and temperature estimates 
based on a qualitative analysis of the probabilities on 
the LRF maps, as predictor variables forcing a regres-
sion model. Final forecast 
values of a lake’s water 
supply are also influenced 
by the forecasters’ qualita-
tive assessment of the LRF 
maps. The resulting fore-
cast represents the USACE-
Detroit contribution to an 
international ly coordi-
nated 6-month Great Lakes 
water-level forecast.

The left side of Fig. 2 
signifies USACE-Detroit’s 
old method, solely using 
the CPC outlook informa-
tion for seasonal predic-
tion. The left side tells a 
forecaster that there is an 
increased probability of 
above-normal tempera-
tures for the Great Lakes 
region. With the available 
information, the forecaster 
wil l make assumptions 

about conditions in the region that are not within 
U.S. borders. Also, it is difficult for the forecaster to 
determine the magnitude of above-normal condi-
tions. The right side of Fig. 2 shows one example of 
how utilizing the NMME within a regional context 
provides more information to the forecaster. There is 
explicit information for the entirety of the Great Lakes 
basin. Also, the display of individual models of the 
NMME (far-right Fig. 2) for the 2015/16 winter com-
municates the variability and uncertainty in forecasts, 
despite a developing strong El Niño, which is cor-
related with warm winter conditions over the Great 
Lakes (Rodionov and Assel 2003; Assel 1998). The 
NMME not only provides magnitudes of anomalies, 
it still provides the forecaster with the information 
necessary to deduce the likelihood of above-normal 
conditions. The additional detail in the right side of 
Fig. 2 gives a more comprehensive “snapshot” that 
could be critical for decision-making and risk-based 
planning.

While the targeted regional maps in Fig. 2 offer 
a useful, qualitative perspective, the region-specific 
seasonal climate forecast tool produces a quantitative, 
ensemble forecast. Development and application of 
the tool are discussed in the following sections.

Overview of development strategy. The primary compo-
nent of the Region-Specific Seasonal Climate Forecast 
(RSCF–NMME) tool is the processing of regularly 

Fig. 1. Visualization of all possible forecast probabilities available for the CPC’s 
LRF maps. An equal-chances forecast (EC) and with no shading on the LRF 
maps means there is an equal chance of below-normal, near-normal, and 
above-normal conditions. Areas marked above normal (A) and below normal 
(B) on the maps denote the use of categories 12–17 and 1–6, respectively. 
(Graphic taken from www.cpc.ncep.noaa.gov.)
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updated forecasts from the NMME suite of global 
climate models (available at ftp://ftp.cpc.ncep.noaa 
.gov/NMME/realtime_anom/). These NMME anom-
aly forecasts, provided by CPC, include a systematic 
error correction for all the models using 29 years 
of hindcasts (Becker et al. 2013). Basin grid cells (at 
1° resolution) are defined by watershed boundaries 
(Fig. 2, right) to generate the region-specific fore-
casts. Basin-averaged temperature and precipitation 
anomalies are approximated as follows:

 

where the product of the grid cell value pi and the 
fraction of the grid cell that resides within the basin 
wi summed over all the grid cells n and divided by 
the sum of the grid cell fractions gives an area-
weighted mean. The number of grid cells ranges from 
n = 19 grids in the Erie basin to n = 56 grids in the 
Michigan–Huron basin.

Another key component of the RSCF–NMME 
is the use of a regional climatology to translate 

anomalies into absolute air temperature and pre-
cipitation forecasts. The regional climatology, 
developed from the NOAA/Great Lakes Environ-
mental Research Laboratory (GLERL) Great Lakes 
hydrometeorological database (Hunter et al. 2015), 
is based on station measurements from both the 
United States and Canada. While other observational 
datasets are available to create the regional climatol-
ogy, we felt that the NOAA/GLERL dataset would be 
most appropriate for the Great Lakes region because 
it employs comparable data and methodologies as 
USACE-Detroit’s dataset, which plays a critical role 
in Great Lakes operational water-level modeling.

Region-specific forecast anomalies from the 
NMME are converted to actual values using the his-
toric observation data. Every run of every model is 
assigned a monthly forecast value for each basin (with a 
6-month forecast horizon) and archived. By preserving 
the information of every member (currently over 100 
members total) from the seven different models, the 
RSCF–NMME dataset now contains a range of values 
that can be used to construct a probabilistic forecast.

The data gathering and preparation portion of the 
RSCF–NMME is designed to be easily transferrable to 

Fig. 2. Schematic depiction of the flow of information used by USACE-Detroit when making a monthly forecast. 
(left) Their conventional method relies on CPC’s LRFs, limited by international borders, with details regarding 
probability, climatology, and uncertainty all blended into one map. (right) The new method utilizes the NMME 
monthly forecasts, with coverage spanning international borders, and the flexibility to isolate details of a fore-
cast, for example, specifically viewing deviations from climatology or uncertainty.
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any region of interest. Code is written in an open-source 
programming language and is designed to automati-
cally run (updating new files and archived files) each 
month. The second portion of the RSCF–NMME tool 
is the development of a web-based graphical interface. 

This dynamic web tool allows users to visualize all the 
data available within the RSCF–NMME data files.

Application of RSCF–NMME. Figure 3 previews 
the graphical interface of the RSCF–NMME tool. 

Fig. 3. Snapshot of the RSCF–NMME tool displaying monthly (top) temperature and (bottom) precipitation 
forecasts. Historical data from NOAA/GLERL Great Lakes hydrometeorological database (1948–2010 for 
temperature and 1900–2012 for precipitation) are shaded gray for values within one standard deviation of the 
1981–2010 mean (referred to as the normal range), pink for values above the normal range, and blue for values 
below the normal range. Full distribution of NMME forecasts is depicted in the box-and-whisker plots, with the 
25th–75th-percentile range of forecast values within the box; outliers are denoted with gray circles. Verification 
observations (green dots) are provided by NOAA/GLERL and are subject to change.
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Boxplots representing the full range of NMME fore-
casts, or any combination of the individual models, 
are automatically generated by clicking on the boxes 
associated with each NMME model (Fig. 3, top). The 
distribution of forecast values emphasizes the full 
range (and uncertainty) within the NMME.

The tool automatically defaults to the most recent 
forecast period, but, as seen in Fig. 3, any forecast 
initiation date may be chosen. On 1 February 2016, 
the tool was accessed with a chosen initiation date 
of August 2015. The resulting display, seen in Fig. 3, 
shows the archived NMME forecasts for the following 
6 months: September 2015–February 2016. In 
addition to the forecast information, for each month 
for which there is observation data, a verification 
point is added (green dot). Note that the verification 
observations are calculated using the same methods 
and stations as the regional climatology but are 
provisional and are subject to change. Since this ex-
ample was accessed on 1 February 2016, there is no 
verification observation for the final month of the 
forecast sequence. The addition of the verification 
observations allows a user to easily assess how well the 
NMME (or one of its individual models) performed 
for the chosen forecast period.

Use of the RSCF–NMME has been effectively 
implemented into the forecasting operations at 
USACE-Detroit. The RSCF–NMME forecast median 
values are used as input into the previously mentioned 
empirical model, and forecasters regularly use 
the graphical interface to guide their water-level 
forecasting decisions.

RSCF–NMME FORECAST EVALUATION. 
While the RSCF–NMME tool does not currently 
contain information from a full hindcast, the forecast 
archive (starting August 2011) can be used to evalu-
ate the NMME forecasts for a displayed time period. 
Figure 4 shows the entire archive of the 3-month 
lead forecasts for the Lake Superior basin. For this 
example, the historical climatology shading now 
represents terciles to be more consistent with the CPC 
LRFs. However, instead of restricting the climatology 
to the 1981–2010 period, the full historical range is 
shown. The dashed lines within the shading show 
what the range would be limited to if the 1981–2010 
period were chosen.

Figure 4 gives a direct comparison of the tool’s 
forecasts versus the CPC’s forecasts for a similar lead 
time. Even in the absence of an assessment of skill or 
performance, Fig. 4 highlights how much additional 
information is available to the user, beyond what can 
be gleaned from the LRFs.

The RSCF–NMME tool provides details about a 
region’s climate that is not available when viewing the 
LRFs. The shaded background in the tool (Fig. 4, top 
panel) communicates what precipitation values are 
typical for the Superior basin and what magnitudes 
constitute an extreme event. While CPC’s LRFs are 
based on the basin’s climatology, a user would have 
to conduct an additional search to obtain specific 
details about that climatology. The added information 
that the tool provides in terms of climatology can be 
particularly useful for a decision-maker. For example, 
if a user needs to know in what month the average 
temperature for a basin typically rises above freez-
ing (which relates to snowmelt and runoff), and if an 
above- or below-average forecast will significantly 
impact those conditions, the user can easily find that 
information with the RSCF–NMME tool.

With the RSCF–NMME tool, a user can access the 
full ensemble of forecasted values for a specific basin. 
These values are available to users in graphical form 
via the web interface but can also be retrieved in a data 
file. For example, USACE-Detroit accesses specific 
quantitative values to use as inputs into their empiri-
cal model. The USACE-Detroit forecasters have the 
option to use the forecasted median value from the 
entire ensemble, or they can choose the median from 
a specific model. For risk assessment and planning 
purposes, extreme values are also readily available 
for analysis. These are added benefits over the LRFs, 
which provide one probability distribution for a 
forecast period, and quantitative values are available 
only for individual stations (or climate divisions) that 
reside within the United States.

Users of the tool also have the benefit of being 
able to immediately see a verification observation 
(Fig. 4, green dots) and how that compared to the 
forecasts. While users of the LRFs have the ability to 
view archived outlook maps, observation maps for 
the same time periods are not included in that archive 
and may be difficult to find.

When evaluating the tool’s entire archive of 
3-month lead precipitation forecasts for the Superior 
basin (Fig. 4, top panel), we find that the range of the 
ensemble can change over time. Upper and lower 
bounds of the RSCF–NMME forecasts are flexible, 
meaning the forecasts are capable of forecasting 
extreme events. The CPC LRF probabilities are cal-
culated based on the 1981–2010 climatology, so the 
upper and lower bounds will be restricted to within 
that observed range. While the RSCF–NMME tool 
can overcome these restrictions, it should also be 
noted that ensemble ranges can be fairly large, as 
seen in Fig. 4, where the full range is often larger 
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than the entire historical range of observations. 
This introduces more uncertainty and can mean 
that certain model members are predicting extreme 
events too often.

The archive of precipitation forecasts also shows 
that the range of the middle-tercile forecasts (Fig. 4, 
thick black in top panel) can change in location (rela-
tive to the historical climatology) and width and 
can also deviate from the near-normal range (gray 
shading). The larger width of this middle tercile could 
suggest more uncertainty, but it can also give a clearer 
indication as to whether the ensemble forecast is 
leaning more toward above-normal or below-normal 
conditions. In the bottom panel of Fig. 4, we find that 
the probability of near-normal conditions remains 
the same throughout the entire time period (at 33%). 
Recall from Fig. 1 that it is possible for a forecast of 
above- or below-normal conditions to be so large that 
it reduces the probability of near-normal conditions, 
but that does not occur over the Superior basin in the 
4 years analyzed. In fact, there were only 10 instances 
out of the 50 months in the analysis where equal 
chances were not forecasted. So, while there is a wide 
range of possible categories for the LRFs, the forecasts 
for the Superior basin (and the other Great Lakes 
basins) remain conservative. This is likely due to a 
lack of skill in the tools utilized by CPC forecasters 
over the region. While the RSCF–NMME tool does 
not give users an indication of the skill of the forecast 
they are viewing, it can give them more information 
than an equal-chances forecast on the LRF maps. For 

example, forecasters at USACE-Detroit are limited to 
running their models assuming average conditions 
when relying on an equal-chances LRF. But when 
they have the extra information provided by the tool 
at their disposal, they can adjust their models to devi-
ate from the average more often.

To demonstrate the effective delivery of the 
NMME forecasts to the USACE-Detroit forecasters, 
we detail their forecasting operations during the 
2015/16 winter. Water-level forecasts are typically 
produced on the second day of the month. A forecast-
er begins the process before forecast day by writing 
a summary of the temperature and precipitation 
outlooks for the following 6 months. There is a direct 
relationship between water levels and precipitation, 
where a precipitation anomaly will result in a water 
supply anomaly of the same sign. The relationship 
between water levels and temperature is indirect and 
can vary throughout the year. Forecasters rely on 
the RSCF–NMME tool for temperature anomalies 
(paying close attention to the regional climatology) 
that could affect precipitation type (frozen precipita-
tion will delay water supply increases), magnitude 
of evaporative loss from the lakes (based on air vs 
water temperatures), timing of lake freezing (affect-
ing evaporative loss), and timing of snowmelt (which 
impacts timing of runoff into the lakes). It is evident, 
during this part of the forecast procedure, how the 
RSCF–NMME tool provides useful information, 
above and beyond the LRFs, that aids in the forecaster’s 
decision-making process.

Fig. 4. Precipitation forecasts at a 3-month lead for the Superior basin. (top) Shading represents the historical 
range of observations, divided into the upper 33% of values in pink, the middle 33% of values in gray, and the 
lower 33% of values in blue. Full distribution of NMME is denoted in black, with thick black marking the middle 
33% of forecasts. Green dots denote the verification observation for that month. (bottom) CPC’s LRF for the 
same period, averaged over stations residing in the Superior basin. Probability of above-normal (below normal) 
precipitation is shaded in green (tan), and probability of near-normal precipitation is given in the white region. 
The top panel forecasts for a specific month (e.g., Jan 2012), and the bottom panel forecasts for a 3-month 
period (e.g., Jan–Mar 2012), both with a 3-month lead time (e.g., forecast initiated in Oct 2011).
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During the strong El Niño of 2015/16, both NMME 
and CPC LRFs predicted warm temperature anoma-
lies throughout fall and winter and dry precipitation 
anomalies over the Great Lakes during the winter 
months. These predicted anomalies were taken into 
consideration by USACE-Detroit forecasters, and 
it was noted in their climate outlook summaries 
that although warm anomalies would decrease the 
likelihood of the lakes freezing over, the warm air 
temperatures would inhibit large evaporative losses 
off the lakes during November and December. Thus, 
they predicted higher water supplies increasing the 
water levels in the late fall and early winter due 
to warm temperature anomalies and lower water 
supplies decreasing the water levels in late winter due 
to the dry precipitation anomalies. The anomalously 
warm fall and winter verified (Fig. 3, green dots), and 
water supplies were anomalously high during the fall 
months. However, the winter was not uniformly dry 
across the basin for all winter months, as was antici-
pated (Superior was anomalously wet in December, 
for example, as seen in bottom of Fig. 3), and water 
supplies remained anomalously high into the spring.

This example highlights how USACE-Detroit 
forecasters were able to make more informed deci-
sions during their forecasting procedure with the 
use of the RSCF–NMME tool, despite the fact that 
the forecasted anomalies from both sources (NMME 
and CPC LRFs) were similar. It is currently unclear 
whether their forecasts will demonstrate improved 
skill based on the inclusion of the RSCF–NMME into 
their operations. However, the possibility exists that 
Great Lakes water-level forecasts may improve with 
time, not only because of the addition of the regional 
climatology information provided by the tool, but 
also as the NMME climate models themselves are 
continually updated and improved.

SUMMARY AND FUTURE WORK. While 
the CPC LRFs remain a useful and informative op-
erational product, we have introduced a web-based 
graphical tool that delivers added valuable informa-
tion to end users who rely on seasonal climate fore-
casts for their decision-making. The tool has been 
successfully integrated into water-level forecasting 
operations at USACE-Detroit and has the potential to 
be modified and reproduced for other regions where 
there is demand.

The RSCF–NMME forecasts may present new chal-
lenges for water resources planning and management. 
A broad range of uncertainty among the models may 
prove less informative to decision-makers (Gronewold 
et al. 2011). However, with the flexibility of the tool, 

the ability to choose specific models, and its display of 
regional climatology and verification observations, we 
believe the tool can better inform users who previously 
only had the LRFs at their disposal.

Future work is already under way to further im-
prove the tool. Based on the request of forecasters at 
USACE-Detroit, regional maps of temperature and 
precipitation anomaly forecasts (as shown in Fig. 2, 
right) have been added to the web interface and can 
similarly be displayed for the entire ensemble or for 
individual models. To better align with CPC’s LRFs, 
there is a plan to include a seasonal forecast option 
(i.e., 3-month averages instead of 1-month averages) 
and to utilize the NMME probabilistic forecasts that 
are also available. These additions will allow for 
better comparison of the performance of the tool to 
the performance of the LRFs and may be useful to 
potential future users.

A robust analysis on the performance of the 
NMME, and its individual models, for the Great 
Lakes region can better be determined by utilizing the 
full 29-yr hindcast datasets available for each model. 
A more comprehensive skill assessment is a neces-
sary next step but is beyond the scope of this paper. 
Regardless, the application of the NMME within a 
seasonal climate forecast tool is a big step toward 
the advancement of the current state of operational 
climate forecasting and has proven useful in regional 
decision-making.
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